The Crystal Structure of Dichloro-2,2', $\mathbf{2}^{\prime \prime}$-terpyridylcobalt(II)

By Elisabeth Goldschmied and N. C.Stephenson
School of Chemistry, University of N.S.W., P.O. Box 1, Kensington, N.S.W., 2033, Australia

(Received 4 February 1969)

Abstract

The crystal structure of dichloro-2,2', $2^{\prime \prime}$-terpyridylcobalt(II), $\mathrm{Co}($ terpy $) \mathrm{Cl}_{2}$, has been determined from three-dimensional data by direct comparison with the known structure of $\mathrm{Zn}($ terpy $) \mathrm{Cl}_{2}$, followed by four cycles of full-matrix least-squares refinement. The crystals consist of discrete monomeric molecules in which the cobalt atom is five-coordinate; its environment is best described as being intermediate between that of the zinc atom in $\mathrm{Zn}($ terpy $) \mathrm{Cl}_{2}$ and that of the cobalt atom in β - Co (paphy) Cl_{2} (paphy $=$ pyridine-2-aldehyde-2'-pyridylhydrazone). There are significant deviations from planarity in the coordinated terdentate ligand.

Introduction

In a previous study (Harris, Lockyer \& Stephenson, 1966) crystals of the anhydrous $1: 1$ adducts of $2,2^{\prime}, 2^{\prime \prime}$ terpyridine (terpy) with the chlorides of $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}$, $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ were prepared. They are all monoclinic (space group $P 2_{1} / c$) with only small differences in their cell dimensions, thus suggesting isormorphism. Substantiating evidence for this assumption was obtained by a comparison of the intensity distribution observed on single-crystal Weissenberg and $h 0 l$ and $h k 0$ precession photographs of these compounds. The intensity distribution is practically the same on all of them,* so that the films become almost superimposable. In order to confirm this assumption it was decided to collect three-dimensional data on the cobalt complex and to compare them with those calculated from the known parameters of $\mathrm{Zn}($ terpy $) \mathrm{Cl}_{2}$. The structure of the latter which had been known for some time (Corbridge \& Cox, 1956) had recently been refined (Einstein \& Penfold, 1966).

In a similar single-crystal study (Lions, Dance \& Lewis, 1967), the cell dimensions and 0 kl intensity distributions of anhydrous $\mathrm{Ni}($ terpy $) \mathrm{Cl}_{2}$ were compared with those of the cobalt complex and found to be very similar, thus suggesting isomorphism of the nickel complex also.

In another recent study, based on evidence obtained from X-ray powder photographs, magnetic moments and Mössbauer studies (Judge, Reiff, Intelle, Ballway \& Baker, 1967), these findings were confirmed and extended to include all the mono(terpy) adducts of the halides ($\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$) of the bivalent ions $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Fe}^{\mathrm{II}}$, $\mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$: with the sole exception of $\mathrm{Fe}($ terpy $) \mathrm{Cl}_{2}$, all were found to be isomorphous with Zn (terpy) Cl_{2}.

[^0]Pyridine-2-aldehyde-2'-pyridylhydrazone (paphy), which is structurally very similar to $2,2^{\prime}, 2^{\prime \prime}$-terpyridine, forms two isomeric mono-complexes with cobalt chloride: a red, octahedral isomer, designated α, and a green β-isomer (Dance, Gerloch, Lewis, Lions \& Stevens, 1966). A crystal stucture determination on the latter (Gerloch, 1966) revealed it to be pentacoordinated and to display some striking similarities with $\mathrm{Zn}($ terpy $) \mathrm{Cl}_{2}$. The details of the crystal structure of $\mathrm{Co}($ terpy $) \mathrm{Cl}_{2}$ provide an interesting comparison with those of $\mathrm{Zn}($ terpy $) \mathrm{Cl}_{2}$ on the one hand and β - Co (paphy) Cl_{2} on the other.

Crystal data

Dichloro-2-2', $2^{\prime \prime}$-terpyridylcobalt(II) crystallizes in thin, green needles, elongated along [100]. The space group and unit-cell dimensions were obtained from single-crystal Weissenberg and $h 0 l$ and $h k 0$ precession photographs; unfiltered cobalt radiation was used for the former and zirconium-filtered molybdenum radiation for the latter. The density of the crystals was measured by flotation in a mixture of 1,2 -dibromoethane and benzene.

The crystal data are as follows:
$\mathrm{CoC}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{Cl}_{2}, M=363 \cdot 1, F(000)=732$
Monoclinic, space group $P 2_{1} / c$ (from systematic absences)
$a=10 \cdot 84, b=8 \cdot 21, c=16 \cdot 24 \AA, \beta=95 \cdot 1^{\circ}, U=1440 \AA^{3}$ $D_{m}=1 \cdot 67_{7}, D_{x}=1.675 \mathrm{~g} . \mathrm{cm}^{-3}, Z=4$.

Experimental

Intensity data were collected from single-crystal equiinclination Weissenberg photographs, taken by rotation about [100], ($h=0,1 \ldots 7$), using unfiltered Сo K α radiation.
The multiple-film technique was used to record the diffraction patterns and the intensities were estimated visually, using a calibrated intensity strip. 1026 independent, non-zero reflexions were observed.

No corrections were made for absorption or extinction effects, nor was any attempt made at this stage to attain internal inter-layer correlation of the eight zones of data.

Comparisons of the structure amplitudes with those calculated from the parameters of dichloro-2,2', $\mathbf{2}^{\prime \prime}$-terpyridylzinc(II)

The observed structure amplitudes were then compared with those calculated from the positional and isotropic thermal parameters of the zinc complex (Einstein \& Penfold, 1966); this comparison was undertaken separately for each layer of data, and an approximate scale factor, S_{h}, based on the criterion

$$
S_{h}=\frac{\sum_{k, l}\left|F_{\text {calle }}\right| n k l}{\sum_{k, l}\left|F_{\text {obs }}\right| n k l}
$$

could thus be calculated for each of them.

The unreliability indices R for the eight layers varied from 0.17 to 0.24 , with an overall value of 0.20 .

Refinement

After scaling the data in accordance with these scale factors, the structure was refined in four full-matrix least-squares cycles, using Cruickshank's (1965) weighting scheme, i.e.

$$
W=1 /\left(a+\left|F_{\mathrm{obs}}\right|+c\left|F_{\mathrm{obs}}\right|^{2}\right),
$$

where $a=2\left|F_{o}\right|_{\text {min }}, c=2 /\left|F_{o}\right|_{\max }$ and $\left|F_{o}\right|_{\text {min }}$ and $\left|F_{o}\right|_{\text {max }}$ are the lowest and highest observed values of $\left|F_{\text {obs }}\right|$ respectively.
The parameters which were varied in the four cycles were:
Cycle (1) Isotropic temperature factors, one overall scale factor, positional parameters
Cycle (2) Individual scale factors (one for each layer of data)

Table 1. Atomic parameters and standard deviations

	x / a	y / b	z / c	B	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	$\sigma(B)$
Co	0.2141	0.0847	0.1174	$3.46 \AA^{2}$	$0.0032 \AA$	$0.0032 \AA$	$0.0029 \AA$	$0.09 \AA^{2}$
$\mathrm{Cl}(1)$	0.1391	0.0201	0.2400	4.82	0.0054	0.0052	0.0053	0.12
$\mathrm{Cl}(2)$	0.3351	0.3143	0.1302	4.13	0.0051	0.0049	0.0045	0.11

Fig.1. (100) projection of the unit cell of $\mathrm{Co}($ terpy $) \mathrm{Cl}_{2}$.

Fig. 2. (010) projection of the unit cell of Co (terpy) Cl_{2}.

Table 1 (cont.)								
	x / a	y / b	z/c	B	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	$\sigma(B)$
N (1)	$0 \cdot 3518$	-0.1078	$0 \cdot 1186$	$3 \cdot 20$	0.015	0.014	0.013	0.29
$\mathrm{N}(2)$	$0 \cdot 2316$	0.0301	-0.0069	$3 \cdot 16$	0.015	0.014	0.014	0.29
N(3)	0.0571	0. 1978	0.0529	$3 \cdot 69$	0.016	0.015	0.014	0.31
C(1)	$0 \cdot 4085$	-0.1747	$0 \cdot 1889$	$4 \cdot 18$	0.021	0.020	0.019	$0 \cdot 40$
C(2)	$0 \cdot 5012$	-0.2908	0.1811	$4 \cdot 88$	0.022	0.022	0.021	0.46
C(3)	$0 \cdot 5409$	-0.3342	$0 \cdot 1083$	$5 \cdot 10$	0.023	0.023	0.021	0.46
C(4)	$0 \cdot 4817$	-0.2629	$0 \cdot 0328$	$4 \cdot 53$	0.022	0.020	0.020	0.41
C(5)	0.3907	-0.1468	0.0441	2.71	0.018	0.016	0.016	$0 \cdot 32$
C(6)	0.3213	-0.0662	-0.0292	2.67	0.018	0.016	0.015	$0 \cdot 30$
C(7)	$0 \cdot 3483$	-0.0847	-0.1109	4.06	0.025	0.020	0.019	0.43
C(8)	0.2693	-0.0100	-0.1704	3.76	0.019	0.019	0.018	0.38
C(9)	$0 \cdot 1749$	0.0925	-0.1494	$4 \cdot 14$	0.021	0.020	0.019	$0 \cdot 40$
C(10)	$0 \cdot 1554$	$0 \cdot 1080$	-0.0650	$2 \cdot 97$	0.018	0.016	0.016	$0 \cdot 33$
C(11)	0.0578	$0 \cdot 1994$	-0.0281	$4 \cdot 54$	0.021	0.020	0.020	0.44
C(12)	-0.0340	0.2830	-0.0826	4.51	0.021	0.020	0.020	0.43
$\mathrm{C}(13)$	-0.1233	0.3715	-0.0440	4.87	0.023	0.022	0.022	0.45
$\mathrm{C}(14)$	-0.1229	0.3685	0.0419	3.85	0.021	0.019	0.019	0.39
C(15)	-0.0359	$0 \cdot 2761$	$0 \cdot 0903$	$4 \cdot 55$	0.021	0.021	0.020	0.42

Table 2. Observed and calculated structure factors

「able 2 (cont.)

Cycle (3) Isotropic temperature factors and individual scale factors
Cycle (4) Isotropic temperature factors, scale factors and positional parameters.
A fifth cycle in which all the parameters were varied simultaneously produced no further significant changes.

The final unreliability index R was $0 \cdot 11$.
The atomic scattering factors used in the structure factor calculations were the Mean Atomic Scattering Factors from Self-consistent and Variational Wave Functions tabulated in International Tables for X-ray Crystallography (1962). 'In phase' corrections allowing for anomalous dispersion were applied to the scattering factors of cobalt and chlorine, using Hönl's (1933a, b) formula. The numerical values of the corrections were interpolated from the tables given by James (1954).

A difference synthesis computed from the structure factors based on the refined model showed no peak representing a residual density of more than 1 e. \AA^{-3}.

The final positional and isotropic thermal parameters are listed in Table 1 and the structure factors calculated from these parameters are tabulated in Table 2, where they are compared with the corresponding observed amplitudes; both $\left|F_{\text {obs }}\right|$ and $F_{\text {cale }}$ are expressed on an absolute scale.

Description

The crystals consist of discrete monomeric molecules with a five-coordinate stereochemistry around the cobalt atom, resulting from covalent bonds formed between it and the three nitrogen atoms of the terdentate ligand and both chlorine atoms.

The molecules are arranged in layers, parallel to (001), in such a way that each layer consists of pairs of molecules related by a centre of symmetry. There

Table 3. Interatomic distances and bond angles

(a) Bond lengths			(b) Some important distances between non-bonded atoms			(c) Bond angles (cont.)		
		σ			σ			σ
$\mathrm{Co}-\mathrm{Cl}(1)$	2.28 Å	0.017 A	$\mathrm{Cl}(1)-\mathrm{Cl}(2)$	3.77 Å	$0.022 \AA$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119	$2 \cdot 1$
$\mathrm{Co}-\mathrm{Cl}(2)$	2.30	0.011	$\mathrm{N}(1)-\mathrm{Cl}(1)$	$3 \cdot 33$	0.030	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	115	1.8
Co- $\mathrm{N}(1)$	$2 \cdot 17$	0.017	$\mathrm{N}(1)-\mathrm{Cl}(2)$	$3 \cdot 48$	0.023	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	124	1.6
$\mathrm{Co}-\mathrm{N}(2)$	2.09	0.017	$\mathrm{N}(2)-\mathrm{Cl}(1)$	$4 \cdot 22$	0.030	$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(6)$	120	1.4
$\mathrm{Co}-\mathrm{N}(3)$	$2 \cdot 13$	0.023	$\mathrm{N}(2)-\mathrm{Cl}(2)$	$3 \cdot 50$	0.022	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	123	1.7
$\mathrm{N}(1)-\mathrm{C}(1)$	1.36	0.026	$\mathrm{N}(3)-\mathrm{Cl}(1)$	3.42	0.025	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	117	1.9
$\mathrm{C}(1)-\mathrm{C}(2)$	1.40	0.029	$\mathrm{N}(3)-\mathrm{Cl}(2)$	3.30	0.029	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	122	1.8
$\mathrm{C}(2)-\mathrm{C}(3)$	1.34	0.029	$\mathrm{N}(1)-\mathrm{N}(2)$	$2 \cdot 58$	0.028	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	118	1.8
$\mathrm{C}(3)-\mathrm{C}(4)$	1.46	0.031	$\mathrm{N}(2)-\mathrm{N}(3)$	$2 \cdot 60$	0.026	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)$	120	1.7
$\mathrm{C}(4)-\mathrm{C}(5)$	1.40	0.026	$\mathrm{C}(4)-\mathrm{C}(7)$	3.01	0.037	$\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{C}(11)$	120	1.8
$\mathrm{C}(5)-\mathrm{N}(1)$	1.35	0.022	$\begin{array}{ccc}\mathrm{C}(9)-\mathrm{C}(12) & 3.03 & 0.034 \\ \text { (c) Bond angles }\end{array}$			$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	124	2.0
$\mathrm{N}(2)-\mathrm{C}(6)$	1.33	0.022				$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	116	1.8
$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 39$	0.025				$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120	$2 \cdot 1$
$\mathrm{C}(7)-\mathrm{C}(8)$	1.38	0.029				$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	121	2.0
$\mathrm{C}(8)-\mathrm{C}(9)$	1.39	0.028				$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{N}(3)$	119	1.8
$\mathrm{C}(9)-\mathrm{C}(10)$	1.41	0.025			${ }^{\sigma}$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120	1.5
$\mathrm{C}(10)-\mathrm{N}(2)$	1.36	0.024	$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{Cl}(2)$	111°	$0.5{ }^{\circ}$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	125	$1 \cdot 6$
$\mathrm{N}(3)-\mathrm{C}(11)$	1.32	0.025	$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{N}(1)$	97	0.7	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	118	1.7
$\mathrm{C}(11)-\mathrm{C}(12)$	1.44	0.031	$\mathrm{Cl}(2)-\mathrm{Co}-\mathrm{N}(1)$	102	0.6	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	128	$1 \cdot 8$
$\mathrm{C}(12)-\mathrm{C}(13)$	1.40	0.029	$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{N}(2)$	150	0.5	$\mathrm{Co}-\mathrm{C}(1)-\mathrm{C}(5)$	116	1.2
C(13)-C(14)	1.40	0.028	$\mathrm{Cl}(2)-\mathrm{Co}-\mathrm{N}(2)$	99	0.7	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	115	$1 \cdot 5$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 40$	0.029	$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{N}(3)$	102	0.7	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	112	1.4
$\mathrm{C}(15)-\mathrm{N}(3)$	1.38	0.026	$\mathrm{Cl}(2)-\mathrm{Co}-\mathrm{N}(3)$	96	$0 \cdot 6$	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Co}$	121	$1 \cdot 3$
$\mathrm{C}(5)-\mathrm{C}(6)$	1.50	0.025	$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(2)$	74	$0 \cdot 9$	$\mathrm{Co}-\mathrm{N}(3)-\mathrm{C}(11)$	115	$1 \cdot 5$
$\mathrm{C}(10)-\mathrm{C}(11)$	1.47	0.027	$\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}(3)$	76	0.9	$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	118	$1 \cdot 9$
			$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(3)$	147	$0 \cdot 6$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(2)$	112	$1 \cdot 5$
			$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$	120°	$1.6{ }^{\circ}$	$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{Co}$	118	$1 \cdot 2$
			$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	118	1.7	$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(1)$	124	$1 \cdot 3$
			$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	123	$2 \cdot 1$	$\mathrm{Co}-\mathrm{N}(3)-\mathrm{C}(15)$	125	$1 \cdot 3$

Table 4. Details of planes

Table 4. Details of planes							
Plane		1 Trigonal equatorial plane	2 $\substack{\text { Basal nitrogen } \\ \text { plane }}$	3 Mean plane through terpy ligand	4 First pyridine ring	5 Second pyridine ring	6 Third pyridine ring
Least-squares plane of best fit through the atoms		$\begin{aligned} & \mathrm{Co}, \mathrm{Cl}(1), \\ & \mathrm{Cl}(2), \mathrm{N}(2) \end{aligned}$	$\mathrm{N}(1), \mathrm{N}(2), \mathrm{N}(3)$	$\begin{aligned} & N(1), N(2), N(3) \\ & C(1) \text { to } C(15) \end{aligned}$	$\begin{gathered} N(1) \\ \mathrm{C}(1) \text { to } \mathrm{C}(5) \end{gathered}$	$\begin{gathered} \mathrm{N}(2) \\ \mathrm{C}(6) \text { to } \mathrm{C}(10) \end{gathered}$	$\begin{gathered} \mathrm{N}(3) \\ \mathrm{C}(11) \text { to } \mathrm{C}(15) \end{gathered}$
Perpendicular equation to the plane* $I X^{\prime}+m Y+n Z^{\prime}=p$	l m n p	$\begin{aligned} & +0.7889 \\ & -0.5582 \\ & +0.2568 \\ & +1.8146 \end{aligned}$	$\begin{aligned} & +0.6029 \\ & +0.7905 \\ & +0.1077 \\ & +1.7029 \end{aligned}$	$\begin{aligned} & +0.6105 \\ & +0.7859 \\ & +0.0983 \\ & +1.6288 \end{aligned}$	$\begin{aligned} & +0.6775 \\ & +0.7319 \\ & +0.0732 \\ & +1.9779 \end{aligned}$	$\begin{aligned} & +0.6138 \\ & +0.7868 \\ & +0.0641 \\ & +1.7260 \end{aligned}$	$\begin{aligned} & +0.5811 \\ & +0.8108 \\ & +0.0695 \\ & +1.6724 \end{aligned}$
Displacement of atoms from the plane (\AA))[in γ position to $\mathrm{N}(2)]$	Co $\mathrm{Cl}(1)$ $\mathrm{Cl}(2)$	$\begin{aligned} & -0.018 \\ & +0.007 \\ & +0.004 \end{aligned}$	$\begin{aligned} & +0.348 \\ & -0.454 \end{aligned}$	+0.418	+0.128	+ 0.264	+0.274
	$\begin{aligned} & \mathrm{N}(1) \\ & \mathrm{N}(2) \\ & \mathrm{N}(3) \end{aligned}$	$+0.007$		$\begin{aligned} & +0.088 \\ & +0.093 \\ & +0.063 \end{aligned}$	-0.018	$\begin{aligned} & -0.063 \\ & +0.009 \\ & -0.060 \end{aligned}$	+0.019
	$\begin{aligned} & \mathrm{C}(1) \\ & \mathrm{C}(2) \\ & \mathrm{C}(3) \\ & \mathrm{C}(4) \\ & \mathrm{C}(5) \end{aligned}$			$\begin{aligned} & +0.082 \\ & -0.060 \\ & -0.130 \\ & -0.114 \\ & +0.041 \end{aligned}$	$\begin{aligned} & +0.012 \\ & -0.008 \\ & +0.008 \\ & -0.013 \\ & +0.018 \end{aligned}$	$\begin{aligned} & -0.107 \\ & -0.243 \\ & -0.270 \\ & -0.214 \\ & -0.068 \end{aligned}$	
	$\begin{aligned} & \mathrm{C}(6) \\ & \mathrm{C}(7) \\ & \mathrm{C}(8) \\ & \mathrm{C}(9) \\ & \mathrm{C}(10) \end{aligned}$	+0.020		$\begin{aligned} & +0.050 \\ & +0.051 \\ & -0.032 \\ & +0.019 \\ & +0.050 \end{aligned}$		$\begin{aligned} & -0.020 \\ & +0.028 \\ & -0.024 \\ & +0.013 \\ & -0.004 \end{aligned}$	
	$\begin{aligned} & \mathrm{C}(11) \\ & \mathrm{C}(12) \\ & \mathrm{C}(13) \\ & \mathrm{C}(14) \\ & \mathrm{C}(15) \end{aligned}$			$\begin{aligned} & +0.021 \\ & -0.087 \\ & -0.079 \\ & -0.034 \\ & -0.021 \end{aligned}$		$\begin{aligned} & -0.057 \\ & -0.137 \\ & -0.153 \\ & -0.157 \\ & -0.167 \end{aligned}$	$\begin{aligned} & +0.012 \\ & -0.026 \\ & +0.012 \\ & +0.019 \\ & -0.035 \end{aligned}$
Angles between bonds and the plane		Bond Angle $\operatorname{Co}-\mathrm{N}(1)$ 72° $\operatorname{Co}-\mathrm{N}(3)$ 75	Bond Angle $\mathrm{Co}-\mathrm{Cl}(1)$ 21° $\mathrm{Co}-\mathrm{Cl}(2)$ 87°				
Dihedral angle between planes Value		$\begin{gathered} 1 \text { and } 2 \\ 86^{\circ} \end{gathered}$				$\begin{array}{ll} \mathrm{qd}_{9}^{\circ} & 5 \mathrm{a} \\ \hline \end{array}$	

is no overlap between molecules in adjacent layers. Within each layer centrosymmetrically related molecules are arranged 'end to end'.

The atomic packing in the crystals is shown in the (100) and (010) projections of the unit cell, in Figs. 1 and 2. The shape of the individual molecules can be seen quite clearly in both of these projections, but it is also shown separately in Fig. 3, which is a photograph of a scale model. Table 3 gives the bond distances and bond angles in the molecule and some important intramolecular distances between non-bonded atoms. Reference will be made to several planes within the molecule; details of these are summarized in Table 4.

Discussion: comparison with Zn (terpy) Cl_{2} and $\mathrm{\beta}-\mathrm{Co}$ (paphy) Cl_{2}

The striking similarity in the pentacoordinated stereochemistry of the metal atom in $\mathrm{Zn}($ terpy $) \mathrm{Cl}_{2}$ and $\beta-\mathrm{Co}$ (paphy) Cl_{2} was pointed out by Gerloch (1966); it is not surprising that the structure of Co (terpy) Cl_{2} displays the same salient features and it is interesting to note that, although the individual differences in bond lengths and angles around the metal atoms of the three complexes is so small as to be barely significant, especially in view of the somewhat large standard deviations reported for the zinc complex, yet in almost every instance where significant differences in geometrical detail do occur, Co (terpy) Cl_{2} is intermediate between the limits set by Zn (terpy) Cl_{2} on the one hand, and β - Co (paphy) Cl_{2} on the other.

The environment of the zinc atom in Zn (terpy) Cl_{2} was originally described by Corbridge \& Cox (1956) as being '.. much closer to a trigonal bipyramid, than to any other recognized arrangement, and in particular it is certainly not that of a tetragonal pyramid ...'; yet although the salient features of the stereochemistry were not significantly altered as a result of the subsequent refinement by Einstein \& Penfold (1966), it was nevertheless suggested by Gerloch (1966) and by Lions et al. (1967) that it might be better described as being tetragonal pyramidal, by analogy with the structure of $\beta-\mathrm{Co}$ (paphy) Cl_{2}.
In what follows, the stereochemistry of the metal atom in Co(terpy) Cl_{2} will be presented in terms of its deviations from both idealized geometries and compared with that found in its zinc-terpy and cobaltpaphy analogues.

Gerloch used the difference of $0.05 \AA$ in the lengths of the two $\mathrm{M}-\mathrm{Cl}$ bonds in β - Co (paphy) Cl_{2} as an argument in favour of describing its stereochemistry as square pyramidal and he pointed out that a significantly longer apical bond is a common feature in this type of stereochemistry (see also Muetterties \& Schunn, 1966); yet no such significant difference was found in either of the terpyridine complexes. While it must be pointed out that Gerloch's standard deviations for the $\mathrm{M}-\mathrm{Cl}$ bonds are less than half of those which were obtained for either of the terpyridine com-
plexes, nevertheless it should also be pointed out that in both of the latter the corresponding difference is only $0.02 \AA$, which could not be regarded as physically meaningful, even if it were significant statistically. In a trigonal bipyramidal stereochemistry, the two $\mathrm{M}-\mathrm{Cl}$ bonds would, of course, be expected to be equivalent.
In all three of the complexes the central M-N bond appears to be slightly shorter than the mean value of the external ones, though the difference is barely significant in any of them, and if real, it is more likely to be due to ligand constraints imposed on the bonding around the metal atom, than to any inherently 'preferred' stereochemistry.

As in the other two complexes, the metal atom, the two chlorine atoms and the central nitrogen atom in Co (terpy) Cl_{2} are coplanar (plane 1, Table 4). However the deviations from trigonalicbipyramidal symmetry lie in the facts that the axial $\mathrm{Co}-\mathrm{N}$ bonds are not perpendicular to this plane, the angle between them being 72 and 75° respectively, and that there is considerable distortion from trigonal symmetry of the bond angles within this plane. It can be seen from Table 5 that this distortion is 13° smaller in Zn (terpy) Cl_{2} and 12° larger in β - Co (paphy) Cl_{2}.

Table 5. Deviation from trigonal symmetry in the equatorial planes of $\mathrm{Zn}($ terpy $) \mathrm{Cl}_{2}, \mathrm{Co}($ terpy $) \mathrm{Cl}_{2}$ and $\beta-\mathrm{Co}$ (paphy) Cl_{2}

All three of the angles $\mathrm{Cl}(2)-\mathrm{M}-\mathrm{N}$ lie within $100 \pm 6^{\circ}$ in the three complexes under discussion. According to Gillespie (1963) this is the optimum value for the angle between an axial and a basal bond in a tetragonal pyramidal complex. It follows that in such a structure the central atom will be slightly displaced from the basal plane in the direction of the apical atom. This displacement is in fact observed in all three of the complexes (Table 6). Furthermore, as would be expected in a tetragonal pyramidal structure, the apical $\mathrm{M}-\mathrm{Cl}(2)$ bond is nearly perpendicular to this plane. In Co (ter$\mathrm{py}) \mathrm{Cl}_{2}$, the $\mathrm{Co}-\mathrm{Cl}(2)$ bond is inclined at 87° to the basal plane defined by the three nitrogen atoms (plane 2) and the trigonal equatorial plane (plane 1),
which contains this bond, makes a dihedral angle of 86° with the nitrogen-atoms plane; this orthogonality has also been observed in the other two complexes.

The main difficulty in describing the structures of the two terpyridine complexes as distorted tetragonal pyramidal lies in the absence of a basal tetragonal plane, defined by the atoms $\mathrm{N}(1), \mathrm{N}(2), \mathrm{N}(3)$ and $\mathrm{Cl}(1)$. In the case of Co (terpy) $\mathrm{Cl}_{2}, \mathrm{Cl}(1)$ lies $0.45 \AA$ 'below' the plane defined by the three nitrogen atoms; this corresponds to approximately a fifth of a bond length. The cobalt atom lies $0.35 \AA$ on the opposite side of this plane. Table 6 gives the corresponding parameters for $\mathrm{Zn}($ terpy $) \mathrm{Cl}_{2}$ and β - Co (paphy) Cl_{2}. It can be seen from this Table that the displacement of

Fig.3. The shape of the molecule of $\mathrm{Co}($ terpy $) \mathrm{Cl}_{2}$ - a scale model.

Fig.4. The relation between tetragonal pyramidal and trigonal bipyramidal coordination.
the 'basal' chlorine atom $[\mathrm{Cl}(1)]$ from the 'basal' plane increases markedly from β - Co (paphy) Cl_{2} to Zn (terpy) Cl_{2}; in the former it may be regarded as a slight distortion, but in the other two complexes it is so great that it is difficult to reconcile this with the concept of a basal tetragonal plane.

It has been repeatedly pointed out that in fivecoordinate complexes, the energy differences involved between trigonal bipyramidal and tetragonal pyramidal structures are very small and that, in fact, the geometrical features of the two types of stereochemistry are not very different. Nevertheless, having made this point, most authors then proceed to classify even distorted five-coordinate structures as tending to conform to a greater extent to one or the other of the idealized geometries in accordance with certain criteria, such as equivalence of axial bond lengths, etc.
If the magnitude of the mean angular deviations from the idealized models is to be taken as a measure of the extent to which the stereochemistry of the three complexes approaches one or the other of the idealized polyhedra, then it is found [Table 7 (a)] that all three of the complexes approach a square-pyramidal model with an angle of $99 \cdot 4^{\circ}$ between axial and basal bonds to a greater extent than they do the trigonal bipyramidal one. However, it could be argued that the very fact that the metal atom in this model is raised above the basal plane is in itself a distortion in the direction of trigonal bipyramidal geometry, since such an arrangement may equally well be regarded as a distorted trigonal bipyramid, such that the axial bonds are bent at the metal atom (Fig. 4), a condition which in these complexes is necessarily brought about by the geometry of the terdentate ligands.
Table 7(b) compares the angular deviations of the three complexes from the idealized trigonal bipyramid with those from a square pyramid in which the metal atom lies in the basal plane. From this point of view it might be argued that $\mathrm{Zn}(\operatorname{terpy}) \mathrm{Cl}_{2}$ is $\left(1-\frac{46}{120}\right) \times$ $100 \%=62 \%$ trigonal-bipyramidal in character, while β-Co(paphy) Cl_{2} is 61% tetragonal-pyramidal in character and the stereochemistry of Co (terpy) Cl_{2} lies just half way between these two extremes.
The configuration of the ligand atoms in the three complexes brings to light another interesting point of distinction between them.

[^1]Table 6. Displacement of metal and basal chlorine atoms from the basal planes of $\mathrm{Zn}(\operatorname{terpy}) \mathrm{Cl}_{2}$, $\mathrm{Co}($ terpy $) \mathrm{Cl}_{2}$ and $\beta-\mathrm{Co}$ (paphy) Cl_{2}

Compound Reference plane through	$\mathrm{Zn}($ terpy $) \mathrm{Cl}_{2}$ middle ring	$\mathrm{Co}($ terpy $) \mathrm{Cl}_{2}$ $\mathrm{~N}(1), \mathrm{N}(2), \mathrm{N}(3)$	$\beta-\mathrm{Co}($ paphy $) \mathrm{Cl}_{2}$
planar ligand			

Both free ligand molecules are presumably planar, like uncoordinated $2,2^{\prime}$-bipyridine (Merritt \& Schroeder, 1956), but while the coordinated paphy ligand is reported to remain strictly planar, this is not the case in the two terpyridine complexes both of which experience some rotation about the single bonds joining the outer rings to the central ring; however this rotation produces different orientations of the rings relative to each other and to the metal atom, in the two complexes. The planes of all three pyridine rings in Co (terpy) Cl_{2} point to the same side of the cobalt atom, while the planes of the external and central rings point towards opposite sides of the zinc atom in Zn (terpy) Cl_{2}. This is, in fact, the only physically significant difference in the structures of the two terpyridine complexes.
It can be seen from Table 4 that, while the individual rings in Co (terpy) Cl_{2} remain planar, the ligand as a whole shows significant deviations from planarity. Inspection of the second-last column in Table 4 shows that all the atoms in the external rings lie on one side of the mean plane through the middle ring (plane 5), i.e. the side away from the cobalt atom. The twisting of the rings with respect to each other is reflected in
dihedral angles of 4.9 and 2.4° respectively, between the planes of the external rings and the middle ring.

Presumably in order to attain the closest possible approach to the cobalt atom, the displacement of each of the nitrogen atoms from the ligand mean plane (plane 3) in the direction of the cobalt atom is greater than that of any of the carbon atoms in the given ring. The arrangement is illustrated in Fig. 5.

The inward bending of the external rings about the two $\mathrm{C}-\mathrm{C}$ bonds joining them to the central ring, which has been observed in both $\mathrm{Zn}($ terpy $) \mathrm{Cl}_{2}$ and β-Co (paphy) Cl_{2} is apparent in Co (terpy) Cl_{2} also. This inward bending is reflected in the differences (both $0.43 \AA$) between the $\mathrm{C}(4)-\mathrm{C}(7)$ and $\mathrm{N}(1)-\mathrm{N}(2)$ distances and between the corresponding $\mathrm{C}(9)-\mathrm{C}(12)$ and $\mathrm{N}(2)-\mathrm{N}(3)$ distances, and in the fact that the four external C-C-C bond angles of the type $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ have a mean value which is 9° greater than the mean value of the four internal $\mathrm{N}-\mathrm{C}-\mathrm{C}$ bond angles of the type $\mathrm{N}(1)-$ $\mathrm{C}(5)-\mathrm{C}(6)$.

It is apparent from the mode of packing of the molecules in the unit cell that no association or bonding interaction of any kind exists between molecules of

Table 7. Angular deviations of (i) $\mathrm{Zn}($ terpy $) \mathrm{Cl}_{2}$, (ii) Co (terpy) Cl_{2}, (iii) β - Co (paphy) Cl_{2} from the idealized trigonal bipyramidal and square pyramidal models

Angle	(a) Angle between axial and basal bonds in the square-pyramidal model $=99 \cdot 4^{\circ}$ *										
	Idealized values		Actual values			Deviations from idealized values					
	Trigonal bipyramidal	Square pyrimidal	(i)	(ii)	(iii)	Trigonal bipyramidal			Square pyramidal		
$\mathrm{Cl}(1)-\mathrm{M}-\mathrm{Cl}(2)$	120°	99°	112°	111°	110°	8°	$9{ }^{\circ}$	10°	13°	12°	11°
$\mathrm{Cl}(1)-\mathrm{M}-\mathrm{N}(1)$	90	88	97	97	100	7	7	10	13°	12	12
$\mathrm{Cl}(1)-\mathrm{M}-\mathrm{N}(2)$	120	161	143	150	157	23	30	37	18	11	4
$\mathrm{Cl}(1)-\mathrm{M}-\mathrm{N}(3)$	90	88	101	102	102	11	12	12	13	14	14
$\mathrm{Cl}(2)-\mathrm{M}-\mathrm{N}(1)$	90	99	102	102	99	12	12	12	3	14	0
$\mathrm{Cl}(2)-\mathrm{M}-\mathrm{N}(2)$	120	99	105	99	94	15	21	26	6	0	5
$\mathrm{Cl}(2)-\mathrm{M}-\mathrm{N}(3)$	90	99	98	96	100		2	10	1	3	1
$\mathrm{N}(1)-\mathrm{M}-\mathrm{N}(2)$	90	88	74	74	74	16	16	16	14	14	14
$\mathrm{N}(2)-\mathrm{M}-\mathrm{N}(3)$	90	88	73	76	75	17	14	15	15	12	13
$\mathrm{N}(1)-\mathrm{M}-\mathrm{N}(3)$	180	161	145	147	(146) \dagger	35	33	34	16	14	15
			Mean angular deviation			15	16	18	11	9	9

(b) Angle between axial and basal bonds in the square-pyramidal model $=90^{\circ}$

Angle	Idealized values				Actual values			Deviations from idealized values						
	Trigonal bipyramidal		Square pyramidal	Difference	(i)	(ii)	(iii)	Trigonal pyramidal			Square pyramidal			
			(i)					(ii)	(iii)					
$\mathrm{Cl}(1)-\mathrm{M}-\mathrm{Cl}(2)$	120°	\neq		90°	30°	112°	111°	110°	8°	9°	10°	22°	21°	20°
$\mathrm{Cl}(1)-\mathrm{M}-\mathrm{N}(1)$	90		90		97	97	100							
$\mathrm{Cl}(1)-\mathrm{M}-\mathrm{N}(2)$	120	\neq	180	60	143	150	157	23	30	37	37	30	23	
$\mathrm{Cl}(1)-\mathrm{M}-\mathrm{N}(3)$	90		90		101	102	102			37	37	30	23	
$\mathrm{Cl}(2)-\mathrm{M}-\mathrm{N}(1)$	90		90		102	102	99							
$\mathrm{Cl}(2)-\mathrm{M}-\mathrm{N}(2)$	120	\neq	90	30	105	99	94	15	21	26	15	9	4	
$\mathrm{Cl}(2)-\mathrm{M}-\mathrm{N}(3)$	90		90		98	96	100							
$\mathrm{N}(1)-\mathrm{M}-\mathrm{N}(2)$	90		90		74	74	74							
$\mathrm{N}(2)-\mathrm{M}-\mathrm{N}(3)$	90		90		73	76	75							
$\mathrm{N}(1)-\mathrm{M}-\mathrm{N}(3)$	180		180		145	147	(146) \dagger							
			Sum	120				46	60	73	74	60	47	

Fig. 5. The shape of the coordinated $2,2^{\prime}, 2^{\prime \prime}$-terpyridine ligand in $\mathrm{Co}(\operatorname{terpy}) \mathrm{Cl}_{2}$. The least-squares mean plane through the three rings is shown by dotted lines. The displacements (\AA) of atoms from the mean plane are shown.
$\mathrm{Co}($ terpy $) \mathrm{Cl}_{2}$. Although there are no fewer than seven-ty-six approaches between non-bonded atoms in neighbouring molecules, whose distances from each other lie between 3.25 and $4.0 \AA$, yet only two of these involve contacts between non-bonded atoms whose separation from each other is significantly shorter than the sum of their van der Waals radii, ${ }^{*}$ i.e. $3 \cdot 28 \AA$ A between $\mathrm{C}(5)$ in (x, y, z) and $\mathrm{C}(14)$ in $(\bar{x}, \bar{y}, \bar{z})$, and $3 \cdot 61 \AA$ between Co in (x, y, z) and $\mathrm{C}(12)$ in $(\bar{x}, \bar{y}, \bar{z})$. These are attributable solely to steric factors.

All computations in this work were carried out on the IBM 360/50 computer at the University of N.S.W. and the programs used included the Oak Ridge Fortran Least Squares and Function and Error (ORFLS and ORFE) programs, written by W.R. Busing, K. O. Martin and H. A. Levy, a three-dimensional Fourier synthesis program by B. Craven and a Best least-

[^2]squares plane program by S. Chu. All these programs were converted into FORTRAN IV-G by D. C. Craig, who also wrote the intensity reduction and structure factor programs used in this work. We should like to express our appreciation to these authors, for allowing us to use their programs.

References

Corbridge, D. E. C. \& Cox, E. G. (1956). J. Chem. Soc. p. 594.

Cruickshank, D. W. J. (1965). In Computing Methods in Crystallography. Ed. J. S. Rollett, Ch. 14, p. 114. New York: Pergamon Press.
Dance, I. G., Gerloch, M., Lewis, J., Lions, F. \& Stevens, F. S. (1966). Nature, Lond. 210, 298.

Einstein, F. W. B. \& Penfold, B. R. (1966). Acta Cryst. 20, 924.
Figgis, B. N., Gerloch, M. \& Mason, R. (1964). Acta Cryst. 17, 506.
Gerloch, M. (1966). J. Chem. Soc. A, p. 1317.
Gillespie, R. J. (1963). J. Chem. Soc. pp. 4672, 4679.
Harris, C. M., Lockyer, T. N. \& Stephenson, N. C. (1966). Austr. J. Chem. 19, 1741.

Hönl, H. (1933a). Z. Phys. 84, 1.
Hönl, H. (1933b). Ann. Phys. 18, 625.
International Tables for X-ray Crystallography (1962). Vol. II. Birmingham: Kynoch Press.

James, R. W. (1954). The Optical Principles of the Diffraction of X-rays, Appendix III, pp. 608-610. London: Bell.
Judge, J. S., Reiff, W. M., Intelle, G. M., Ballway, P. \& Baker, W. A., Jr. (1967). J. Inorg. Nucl. Chem. 29, 1711. Lions, F., Dance, I. G. \& Lewis, J. (1967). J. Chem. Soc. A, p. 565.
Merritt, L. L., Jr \& Schroeder, E.lD. (1956). Acta Cryst. 9, 801.
Muetterties, E. L. \& Schunn, R. A. (1966). Quart. Rev. Chem. Soc. Lond. 20 (2), 245.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithica: Cornell Univ. Press.

[^0]: * It should be noted, however, that some differences in the 0 kl intensity distributions of $\mathrm{Co}($ terpy $) \mathrm{Cl}_{2}$ and Zn (terpy) Cl_{2} were observed in a subsequent study (Lions, Dance \& Lewis, 1967).

[^1]: * The mean value of the $\mathrm{Cl}(2)-\mathrm{M}-\mathrm{N}$ angles in the three complexes.

[^2]: * The van der Waals radii for the carbon and nitrogen atoms in the pyridine rings were taken as $1 \cdot 70 \AA$, i.e. the half thickness of an aromatic ring, according to Pauling (1960). The van der Waals radius of chlorine ($1 \cdot 80 \AA$) was obtained from the same source.

 The van der Waals radius of :obalt(II) was estimated as follows:

 Using a value of $0.99 \AA$ for the covalent radius of chlorine (Pauling, 1960) the covalent radius of $\mathrm{Co}^{I I}$ in this complex was estimated as $1 \cdot 30 \AA$, from the mean value of the two $\mathrm{Co}-\mathrm{Cl}$ bond distances. This value lies between 1.32 and $1.25 \AA$, which are the estimated values for the octahedral and tetrahedral radii of $\mathrm{Co}^{\mathrm{II}}$ respectively. (Pauling, 1960; Figgis, Gerloch \& Mason, 1964). The van der Waals radius was then estimated as $2 \cdot 1 \AA$, in accordance with Pauling's observation that the van der Waals radius of an element or ion is generally $0.80 \pm 0.05 \AA$ greater than the corresponding single-bond covalent radius.

 A similar argument based on the observed $\mathrm{Co}-\mathrm{N}$ bond distances, leads to values for the covalent and van der Waals radii of cobalt(II), which are from $0 \cdot 05-0.10 \AA$ greater than those quoted above.

